metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[silver(I)-µ-2-phenylimidazolato- $\kappa^2 N:N'$

Qian Gao, Jian-Bo Feng, Chao-Yan Zhang and Ya-Bo Xie*

College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China Correspondence e-mail: xieyabo@eyou.com

Received 27 October 2007; accepted 1 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.041; wR factor = 0.068; data-to-parameter ratio = 18.0.

The asymmetric unit of the title compound, $[Ag(C_9H_7N_2)]_n$, contains two independent Ag^{I} ions and two 2-phenyl-imidazolate (L) ligands. Each Ag^{I} centre is linearly coordinated by two N atoms [Ag-N 2.092 (3)-2.097 (3) Å]. Ligands L bridge Ag^{I} ions into polymeric chains parallel to the c axis, with Ag···Ag separations of 6.232 (2) and 6.254 (2) Å. No interactions between the Ag centres from neighbouring chains are observed.

Related literature

For related polymeric crystal structures, see: Liu & Zhu (2005); Mukhopadhvay & Pal (2006); Huang et al. (2006).

Experimental

Crystal data $[Ag(C_9H_7N_2)]$ $M_r = 251.04$ Monoclinic, P21

a = 10.091 (2) Å b = 6.9995 (14) Å c = 12.470 (3) Å

 $\beta = 101.59 \ (3)^{\circ}$ V = 862.8 (3) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
SADABS (Bruker, 1998)
$T_{\min} = 0.924, T_{\max} = 1.000$
(expected range $= 0.586 - 0.634$)

Refinement

$P[F^2 = 2 (F^2)] = 0.041$	TT / / / / /
$R[F > 2\sigma(F)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.068$	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm A}^{-3}$
S = 1.00	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$
3905 reflections	Absolute structure: Flack (1983),
217 parameters	1770 Friedel pairs
1 restraint	Flack parameter: -0.01 (4)

 $\mu = 2.28 \text{ mm}^{-1}$ T = 293 (2) K

 $R_{\rm int} = 0.042$

 $0.30 \times 0.20 \times 0.20$ mm

9131 measured reflections

3905 independent reflections

3209 reflections with $I > 2\sigma(I)$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2336).

References

- Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Huang, X.-C., Zhang, J.-P. & Chen, X.-M. (2006). Cryst. Growth Des. 6, 1194-1198.
- Liu, X.-Y. & Zhu, H.-L. (2005). Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 35, 155-159.

Mukhopadhyay, A. & Pal, S. (2006). Eur. J. Inorg. Chem. pp. 4879-4887.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2952 [doi:10.1107/S160053680705533X]

catena-Poly[silver(I)- μ -2-phenylimidazolato- $\kappa^2 N:N'$]

Q. Gao, J.-B. Feng, C.-Y. Zhang and Y.-B. Xie

Comment

The crystal structures of silver(I) imidazolate, catena-poly[($m/^2$ -2-imidazolato-N,N')-silver(I)] (Huang et al., 2006) and silver(I) methylimidazolate, catena-poly[($m/^2$ -2-methylimidazolato-N,N')-silver(I)] (Liu & Zhu, 2005) have been reported recently. Both complexes take a one-dimensional ligand-bridged-Ag(I) chain structure, which is further extended to form a three-dimensional framework through Ag—Ag interactions. On the other hand, for the 2-phenylimidazolate ligand, only one metal complex was documented (Mukhopadhyay & Pal, 2006). Herein, we report the structure of silver(I) 2-phenylimidazolate, [Ag₂(C₉H₇N₂)₂]_n (I), which has also a one-dimensional ligand-bridged chain structure, however, without Ag—Ag interactions that may be attributed to the bulky substituent 2-phenylimidazolate, which isolates the chains.

As shown in Figure 1, (I) has a one-dimensional chain structure, in which there exist two crystallographically independent Ag(I) ions Ag1 and Ag2 and two 2-phenylimidazolate ligands with similar coordination environments, respectively. Each Ag(I) center linearly coordinates to two N atoms from two ligands with the N—Ag—N angles of 176.40 (15) and 173.72 (19) $^{\circ}$ for Ag1 and Ag2, respectively. Simultaneously, each 2-phenylimidazolate group bridges two Ag(I) ions to form a one-dimensional chain related by a 2₁ axis, with the Ag—Ag separations of 6.232 (2) [Ag1—Ag2] and 6.254 (2) Å [Ag1—Ag2B]. The dihedral angles between benzene ring and imidazole ring are 31.1 (2) $^{\circ}$ for [ring C4—C9 and C1—C3—N1—N2] and 37.6 (2) $^{\circ}$ for [ring C13—C18 and C10—C11—N3—N4], respectively. In the crystal, these chains are packed parallel along the c direction and without Ag—Ag or other weak interactions (Figure 2).

Experimental

A mixture of 2-phenylimidazole (43 mg, 0.3 mmol) and AgNO₃ (51 mg, 0.3 mmol) was dissolved in 10 ml of ammonium hydroxide (20%). The resulted solution was filtered and filtrate was allowed to stand for 15 days in the dark. Colourless crystals of (I) were collected, in about 30% yield.

Refinement

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. A portion of polymeric one-dimensional chain structure of (I), showing the atomic numbering and 30% probability displacement ellipsoids [symmetry codes: (A) x, y, 1 + z; (B) x, y, z - 1].

Fig. 2. A portion of crystal packing viewed approximately down the *b* axis. H atoms omitted for clarity.

catena-Poly[(m/²-2-phenylimidazolato-N,N¹)-silver(I)]

Crystal data

$[Ag(C_9H_7N_2)]$	$F_{000} = 488$
$M_r = 251.04$	$D_{\rm x} = 1.933 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 8115 reflections
a = 10.091 (2) Å	$\theta = 3.3 - 27.5^{\circ}$
b = 6.9995 (14) Å	$\mu = 2.28 \text{ mm}^{-1}$
c = 12.470 (3) Å	T = 293 (2) K
$\beta = 101.59 \ (3)^{\circ}$	Block, colourless
$V = 862.8 (3) \text{ Å}^3$	$0.30 \times 0.20 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	3905 independent reflections
Radiation source: fine-focus sealed tube	3209 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
T = 293(2) K	$\theta_{max} = 27.5^{\circ}$
ϕ and ω scan	$\theta_{\min} = 3.3^{\circ}$
Absorption correction: multi-scan SADABS (Bruker, 1998)	$h = -13 \rightarrow 13$
$T_{\min} = 0.924, T_{\max} = 1.000$	$k = -9 \rightarrow 9$
9131 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2(F_o^2) + (0.015P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.068$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.60 \text{ e } \text{\AA}^{-3}$
3905 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$
217 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983)

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ag1	1.01351 (4)	0.61504 (6)	0.37721 (2)	0.04521 (13)
Ag2	1.04157 (4)	0.63552 (5)	0.88088 (2)	0.05074 (14)
N1	1.0799 (4)	0.6277 (9)	0.2284 (2)	0.0429 (9)
N2	1.0931 (4)	0.6167 (9)	0.0521 (3)	0.0420 (10)
N3	0.9598 (4)	0.5982 (8)	0.5304 (2)	0.0422 (11)
N4	0.9737 (4)	0.6318 (10)	0.7105 (3)	0.0447 (10)
C1	1.2115 (5)	0.5983 (12)	0.2218 (3)	0.0536 (16)
H1A	1.2835	0.5844	0.2809	0.064*
C2	1.2200 (5)	0.5929 (10)	0.1145 (4)	0.0518 (16)
H2A	1.2989	0.5757	0.0879	0.062*
C3	1.0099 (4)	0.6291 (18)	0.1249 (3)	0.0335 (11)
C4	0.8623 (5)	0.6610 (9)	0.0921 (3)	0.0357 (14)
C5	0.7890 (5)	0.5820 (8)	-0.0049 (3)	0.0424 (13)
H5A	0.8331	0.5050	-0.0475	0.051*
C6	0.6528 (5)	0.6166 (11)	-0.0384 (4)	0.0596 (14)
H6A	0.6062	0.5673	-0.1046	0.071*
C7	0.5846 (6)	0.7250 (9)	0.0265 (5)	0.0701 (19)
H7A	0.4924	0.7476	0.0041	0.084*
C8	0.6537 (6)	0.7985 (8)	0.1235 (5)	0.0546 (15)
H8A	0.6080	0.8691	0.1678	0.065*
С9	0.7912 (6)	0.7680 (7)	0.1555 (4)	0.0454 (14)
H9A	0.8372	0.8203	0.2210	0.055*
C10	0.8325 (5)	0.5729 (9)	0.5531 (4)	0.0505 (18)
H10A	0.7538	0.5457	0.5024	0.061*
C11	0.8428 (5)	0.5950 (12)	0.6630 (4)	0.0554 (17)
H11A	0.7715	0.5864	0.6998	0.067*
C12	1.0415 (4)	0.628 (2)	0.6275 (3)	0.0359 (9)
C13	1.1888 (5)	0.6649 (9)	0.6416 (3)	0.0393 (14)
C14	1.2641 (6)	0.5643 (8)	0.5782 (4)	0.0543 (16)
H14A	1.2222	0.4726	0.5288	0.065*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

C15	1.4013 (6)	0.6000 (11)	0.5883 (4)	0.0703 (17)
H15A	1.4513	0.5322	0.5460	0.084*
C16	1.4629 (7)	0.7352 (11)	0.6606 (6)	0.081 (2)
H16A	1.5544	0.7602	0.6653	0.098*
C17	1.3931 (7)	0.8356 (9)	0.7269 (5)	0.0691 (18)
H17A	1.4367	0.9251	0.7769	0.083*
C18	1.2549 (6)	0.7987 (8)	0.7164 (4)	0.0509 (14)
H18A	1.2060	0.8648	0.7603	0.061*

Atomic displacement parameters (\AA^2)

Ag1 0.0583 (2) 0.0590 (3) 0.01865 (16) -0.0022 (4) 0.00847 (14) -0.002 Ag2 0.0724 (3) 0.0617 (4) 0.02221 (18) 0.0098 (4) 0.01922 (15) 0.002 N1 0.053 (2) 0.058 (3) 0.0187 (16) -0.003 (5) 0.0101 (15) -0.00 N2 0.056 (2) 0.049 (3) 0.0236 (17) 0.005 (4) 0.0143 (15) -0.00 N3 0.054 (2) 0.054 (3) 0.0194 (17) -0.002 (3) 0.0085 (15) -0.00 N4 0.055 (2) 0.059 (3) 0.0235 (17) 0.012 (5) 0.0160 (16) 0.005 C1 0.047 (3) 0.080 (5) 0.032 (2) 0.015 (4) 0.004 (2) 0.009	02 (2) 4 (3) 3 (3) 4 (3) 3 (2) (3) (4) (3) 8 (4)
Ag2 0.0724 (3) 0.0617 (4) 0.02221 (18) 0.0098 (4) 0.01922 (15) 0.002 N1 0.053 (2) 0.058 (3) 0.0187 (16) -0.003 (5) 0.0101 (15) -0.000 N2 0.056 (2) 0.049 (3) 0.0236 (17) 0.005 (4) 0.0143 (15) -0.000 N3 0.054 (2) 0.054 (3) 0.0194 (17) -0.002 (3) 0.0085 (15) -0.000 N4 0.055 (2) 0.059 (3) 0.0235 (17) 0.012 (5) 0.0160 (16) 0.0055 C1 0.047 (3) 0.080 (5) 0.032 (2) 0.015 (4) 0.004 (2) 0.009	4 (3) 3 (3) 4 (3) 3 (2) (3) (4) (3) 8 (4)
N1 0.053 (2) 0.058 (3) 0.0187 (16) -0.003 (5) 0.0101 (15) -0.00 N2 0.056 (2) 0.049 (3) 0.0236 (17) 0.005 (4) 0.0143 (15) -0.00 N3 0.054 (2) 0.054 (3) 0.0194 (17) -0.002 (3) 0.0085 (15) -0.00 N4 0.055 (2) 0.059 (3) 0.0235 (17) 0.012 (5) 0.0160 (16) 0.005 C1 0.047 (3) 0.080 (5) 0.032 (2) 0.015 (4) 0.004 (2) 0.009	3 (3) 4 (3) 3 (2) (3) (4) (3) 8 (4)
N2 0.056 (2) 0.049 (3) 0.0236 (17) 0.005 (4) 0.0143 (15) -0.00 N3 0.054 (2) 0.054 (3) 0.0194 (17) -0.002 (3) 0.0085 (15) -0.00 N4 0.055 (2) 0.059 (3) 0.0235 (17) 0.012 (5) 0.0160 (16) 0.005 C1 0.047 (3) 0.080 (5) 0.032 (2) 0.015 (4) 0.004 (2) 0.009	4 (3) 3 (2) (3) (4) (3) 8 (4)
N3 0.054 (2) 0.054 (3) 0.0194 (17) -0.002 (3) 0.0085 (15) -0.00 N4 0.055 (2) 0.059 (3) 0.0235 (17) 0.012 (5) 0.0160 (16) 0.005 C1 0.047 (3) 0.080 (5) 0.032 (2) 0.015 (4) 0.004 (2) 0.009	3 (2) (3) (4) (3) 8 (4)
N40.055 (2)0.059 (3)0.0235 (17)0.012 (5)0.0160 (16)0.005C10.047 (3)0.080 (5)0.032 (2)0.015 (4)0.004 (2)0.009	 (3) (4) (3) 8 (4)
C1 0.047 (3) 0.080 (5) 0.032 (2) 0.015 (4) 0.004 (2) 0.009	(4) (3) 8 (4)
	(3) 8 (4)
C2 0.053 (3) 0.059 (5) 0.048 (3) 0.013 (4) 0.022 (2) 0.006	8 (4)
C3 0.047 (3) 0.035 (3) 0.0197 (19) -0.018 (6) 0.0108 (16) -0.00	
C4 0.047 (3) 0.038 (4) 0.024 (2) -0.005 (3) 0.0117 (19) 0.004	(3)
C5 0.054 (3) 0.043 (4) 0.032 (2) -0.003 (3) 0.013 (2) -0.00	5 (3)
C6 0.060 (3) 0.070 (4) 0.043 (3) -0.022 (5) -0.003 (2) -0.00	3 (4)
C7 0.041 (4) 0.087 (5) 0.081 (5) -0.010 (3) 0.011 (3) 0.016	(4)
C8 0.048 (4) 0.060 (4) 0.057 (4) 0.005 (3) 0.017 (3) 0.001	(3)
C9 0.053 (4) 0.049 (3) 0.036 (3) -0.004 (3) 0.012 (3) -0.004	3 (3)
C10 0.047 (3) 0.067 (6) 0.037 (3) -0.003 (3) 0.006 (2) 0.002	(3)
C11 0.055 (3) 0.075 (5) 0.041 (3) 0.013 (4) 0.023 (2) 0.012	(4)
C12 0.050 (3) 0.039 (3) 0.0212 (19) -0.002 (5) 0.0126 (16) 0.000	(4)
C13 0.052 (3) 0.046 (4) 0.020 (2) 0.008 (3) 0.0083 (19) 0.005	(3)
C14 0.057 (4) 0.063 (4) 0.043 (3) 0.007 (3) 0.007 (3) -0.01	2 (3)
C15 0.060 (4) 0.085 (5) 0.070 (4) 0.017 (5) 0.023 (3) -0.00	7 (4)
C16 0.047 (4) 0.103 (6) 0.090 (5) 0.003 (4) 0.005 (4) 0.001	(5)
C17 0.063 (5) 0.074 (5) 0.061 (4) -0.003 (4) -0.010 (4) -0.00	9 (3)
C18 0.062 (4) 0.056 (4) 0.034 (3) 0.007 (3) 0.007 (3) -0.00	3 (3)

Geometric parameters (Å, °)

Ag1—N1	2.097 (3)	С6—Н6А	0.9300
Ag1—N3	2.092 (3)	С7—С8	1.370 (8)
Ag2—N2 ⁱ	2.097 (3)	С7—Н7А	0.9300
Ag2—N4	2.097 (3)	C8—C9	1.381 (7)
N1—C3	1.342 (4)	C8—H8A	0.9300
N1—C1	1.363 (5)	С9—Н9А	0.9300
N2—C3	1.358 (5)	C10-C11	1.362 (6)
N2—C2	1.368 (6)	C10—H10A	0.9300
N2—Ag2 ⁱⁱ	2.097 (3)	C11—H11A	0.9300

N3—C12	1.338 (5)	C12—C13	1.484 (6)
N3—C10	1.381 (6)	C13—C14	1.393 (6)
N4—C12	1.351 (4)	C13—C18	1.394 (7)
N4—C11	1.359 (6)	C14—C15	1.387 (7)
C1—C2	1.358 (6)	C14—H14A	0.9300
C1—H1A	0.9300	C15—C16	1.367 (9)
C2—H2A	0.9300	C15—H15A	0.9300
C3—C4	1.480 (7)	C16—C17	1.381 (9)
C4—C9	1.388 (7)	C16—H16A	0.9300
C4—C5	1.399 (6)	C17—C18	1.399 (8)
C5—C6	1.375 (7)	C17—H17A	0.9300
С5—Н5А	0.9300	C18—H18A	0.9300
C6—C7	1.388 (8)		
N3—Ag1—N1	176.40 (15)	С6—С7—Н7А	120.1
N4—Ag2—N2 ⁱ	173.72 (19)	C7—C8—C9	120.0 (5)
C3—N1—C1	105.9 (3)	С7—С8—Н8А	120.0
C3—N1—Ag1	130.7 (3)	С9—С8—Н8А	120.0
C1—N1—Ag1	122.4 (3)	C8—C9—C4	121.5 (5)
C3—N2—C2	105.1 (3)	С8—С9—Н9А	119.2
C3—N2—Ag2 ⁱⁱ	128.1 (3)	С4—С9—Н9А	119.2
C2—N2—Ag2 ⁱⁱ	126.8 (3)	C11—C10—N3	107.8 (4)
C12—N3—C10	105.4 (3)	C11-C10-H10A	126.1
C12—N3—Ag1	126.3 (3)	N3—C10—H10A	126.1
C10—N3—Ag1	128.1 (3)	N4—C11—C10	109.3 (4)
C12—N4—C11	105.1 (4)	N4—C11—H11A	125.3
C12—N4—Ag2	131.6 (3)	C10-C11-H11A	125.3
C11—N4—Ag2	122.3 (3)	N3—C12—N4	112.4 (4)
C2C1N1	108.6 (4)	N3—C12—C13	123.7 (3)
C2—C1—H1A	125.7	N4—C12—C13	123.8 (4)
N1—C1—H1A	125.7	C14—C13—C18	118.6 (5)
C1—C2—N2	108.7 (4)	C14—C13—C12	119.6 (6)
C1—C2—H2A	125.7	C18—C13—C12	121.8 (6)
N2—C2—H2A	125.7	C15-C14-C13	120.3 (5)
N1—C3—N2	111.5 (4)	C15—C14—H14A	119.8
N1—C3—C4	125.0 (4)	C13—C14—H14A	119.8
N2—C3—C4	123.3 (4)	C16—C15—C14	119.9 (6)
C9—C4—C5	117.5 (5)	C16-C15-H15A	120.1
C9—C4—C3	122.0 (5)	C14—C15—H15A	120.1
C5—C4—C3	120.4 (5)	C15-C16-C17	121.8 (6)
C6—C5—C4	121.0 (5)	C15—C16—H16A	119.1
С6—С5—Н5А	119.5	C17—C16—H16A	119.1
C4—C5—H5A	119.5	C16—C17—C18	118.0 (6)
C5—C6—C7	120.1 (5)	С16—С17—Н17А	121.0
С5—С6—Н6А	119.9	C18—C17—H17A	121.0
С7—С6—Н6А	119.9	C13—C18—C17	121.3 (5)
C8—C7—C6	119.8 (5)	C13—C18—H18A	119.3
С8—С7—Н7А	120.1	C17—C18—H18A	119.3
C3—N1—C1—C2	3.3 (10)	C12—N3—C10—C11	1.8 (10)

supplementary materials

Ag1—N1—C1—C2	172.7 (5)	Ag1-N3-C10-C11	-172.3 (5)
N1-C1-C2-N2	-0.6 (9)	C12-N4-C11-C10	-0.9 (11)
C3—N2—C2—C1	-2.2 (10)	Ag2-N4-C11-C10	-170.7 (4)
Ag2 ⁱⁱ —N2—C2—C1	176.6 (5)	N3—C10—C11—N4	-0.6 (10)
C1—N1—C3—N2	-4.8 (12)	C10-N3-C12-N4	-2.5 (12)
Ag1—N1—C3—N2	-173.1 (5)	Ag1—N3—C12—N4	171.8 (6)
C1—N1—C3—C4	-178.6 (10)	C10-N3-C12-C13	-179.3 (11)
Ag1—N1—C3—C4	13.2 (16)	Ag1—N3—C12—C13	-5.0 (17)
C2—N2—C3—N1	4.4 (11)	C11—N4—C12—N3	2.1 (13)
Ag2 ⁱⁱ —N2—C3—N1	-174.4 (5)	Ag2—N4—C12—N3	170.6 (6)
C2—N2—C3—C4	178.3 (9)	C11—N4—C12—C13	178.9 (11)
Ag2 ⁱⁱ —N2—C3—C4	-0.5 (15)	Ag2—N4—C12—C13	-12.6 (18)
N1—C3—C4—C9	27.6 (14)	N3-C12-C13-C14	-39.2 (16)
N2—C3—C4—C9	-145.5 (9)	N4-C12-C13-C14	144.4 (10)
N1-C3-C4-C5	-152.0 (9)	N3-C12-C13-C18	140.4 (10)
N2—C3—C4—C5	34.9 (13)	N4-C12-C13-C18	-36.1 (16)
C9—C4—C5—C6	2.8 (8)	C18—C13—C14—C15	-1.2 (8)
C3—C4—C5—C6	-177.5 (7)	C12-C13-C14-C15	178.4 (7)
C4—C5—C6—C7	-2.6 (9)	C13-C14-C15-C16	-0.2 (9)
C5—C6—C7—C8	0.5 (10)	C14—C15—C16—C17	1.6 (10)
C6—C7—C8—C9	1.3 (9)	C15-C16-C17-C18	-1.5 (10)
C7—C8—C9—C4	-1.0 (9)	C14—C13—C18—C17	1.4 (8)
C5—C4—C9—C8	-1.1 (8)	C12-C13-C18-C17	-178.2 (7)
C3—C4—C9—C8	179.3 (6)	C16-C17-C18-C13	0.0 (9)
Symmetry codes: (i) $r = r + 1$: (ii) $r = r$	- _1		

Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.

Fig. 2

